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Frequentist Approach

I Until now, much of what you have learned about classical statistics
can be considered part of the Frequentist approach to probability

I In the Frequentist setting, we interpret probabilities over events as
long-run expected frequencies of occurrence

I This often leads to intuitive estimation techniques. For instance, to
determine P(Heads) for a coin, we can simply flip the coin a large
number of times, and count the number of heads.

I It is also why you must be very careful in interpretting a frequentist
confidence interval

• For a (1− α) · 100% CI, computed as θ̂ ± Zα/2 · SE(θ̂), we say that
if we were to collect a large number of such intervals, then
approximately (1− α)% of them would contain the true θ

• It is not correct to say that an individual interval contains the true
value with (1− α)% probability, because frequentist estimators only
derive meaning through long-run repetition of experiments

Matthew Edwards Bayesian Inference August 19, 2021 3 / 31



Frequentist Approach (cont.)

• Notice that this is a probability statement about the interval, not
about θ or its estimator

I In the frequentist setting, individual realizations of random variables
have no meaning (at least no useful one)

I Moreover, some probability statements don’t easily fit into a
long-run setting

• E.g. What is the probability that it will rain tomorrow? What is the
probability that Canada will win more than 10 gold medals at the
Tokyo Olympics?

• These events will likely never be repeated at all, let alone in large
enough numbers to draw inference under the frequentist paradigm

• Is there another way we can interpret probability that gives
meaningful interpretation to all events without losing mathematical
tractability and ease of estimation?
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The Bayesian Approach

I The Bayesian approach treats probability as a degree of belief
about whether an event will occur

I We maintain prior beliefs about the probabilities of events (called a
priori information), and we use experimental evidence to update
our beliefs according to Bayes Rule:

π(θ|X ) =
L(X |θ)π(θ)

π(X )

In the above equation:

I X is the evidence

I θ is event of interest

I π(θ) represents our prior degree of belief about θ

I L(X |θ) is the Likelihood of observing the evidence given our event
of interest has occurred
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The Bayesian Approach (cont.)

I π(θ|X ) represents our updated (a posteriori) beliefs about θ after
observing evidence X

I π(X ) is a normalizing constant that ensures our posterior
distribution integrates to 1 (ie ensures a proper posterior)

I In the frequentist setting, we treated X as the random variable, and
θ as a set of fixed parameters

I In the Bayesian setting, we do the reverse - θ is a random variable,
and our evidence is fixed

I The use of prior knowledge lets us treat Bayesian probabilities more
subjectively - different people have different prior knowledge about a
problem

I Let’s see a simple example to illustrate these ideas...
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Coin Flip Example

I Suppose we’re flipping a two-sided coin (H,T ), but we’re not sure if
the coin is fair

I There are two possibilities: θ ∈ {fair , loaded} corresponding to
P(H) = 0.5, or P(H) = 0.7

I One way we can evaluate whether the coin is fair is by testing it.
Suppose we flip it 5 times, and get 2H, 3T

I Let’s assume the likelihood of receiving x heads in 5 flips follows a
Bin(5, ?) distribution

L(x |θ) =

(
5

x

)
(0.5)5I{θ = fair}+

(
5

x

)
(0.7)x(0.3)5−x I{θ = loaded}

L(x = 2|θ) = 0.3125I{θ = fair}+ 0.1323I{θ = loaded}

I In the frequentist case, we choose the value of θ that is most likely to
have generated our evidence (2H). Formally, θ̂MLE = argminθL(x |θ)

Matthew Edwards Bayesian Inference August 19, 2021 7 / 31



Coin Flip Example

I This is called the Maximum Likelihood Estimate of θ, and for our
likelihood, we can clearly see that θ̂MLE = fair , since

L(2|fair) = 0.3125 > 0.1323 = L(2|loaded)

I But what if we knew in advance the coin was more likely to be
loaded (ie suppose P(loaded) = 0.6)? Under the Bayesian setting,
we can use prior information to estimate θ:

π(θ|X ) =
L(X |θ)π(θ)

π(X )
=

L(X |θ)π(θ)∑
θ L(X |θ)π(θ)

=

(
5
x

)
[(0.5)5I{θ = fair} · (0.4) + (0.7)x(0.3)5−x I{θ = loaded} · (0.6)](

5
x

)
[(0.5)5(0.4) + (0.7)x(0.3)5−x(0.6)]

Matthew Edwards Bayesian Inference August 19, 2021 8 / 31



Coin Flip Example

I Substituting our evidence:

π(θ|X = 2) = 0.612I{θ = fair}+ 0.388I{θ = loaded}

I We can see that P(loaded) = 0.388. This answer is more intuitive
than in the frequentist setting.

I What would happen if we were shown more evidence? The
posterior becomes the new prior.

I Suppose in five more flips, we get 0H, 5T (recall our r.v. is the
number of heads). We can update the old posterior with new
evidence:

π(θ̃|x̃) =
π(θ|x)L(x̃ |θ̃)

π(x̃)
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Coin Flip Example

=

(
5
0

)
[(0.5)5I{θ = fair} · (0.612) + (0.7)0(0.3)5−0I{θ = loaded} · (0.388)](

5
0

)
[(0.5)5(0.612) + (0.7)0(0.3)5−0(0.388)]

π(θ̃|x̃) = 0.953I{θ = fair}+ 0.047I{θ = loaded}

I We can see that given the new evidence, our belief leans strongly
towards the coin being fair

I This might seem confusing - Wouldn’t a series of tails only be
evidence of a loaded coin? But remember our definition of loaded
was P(H) = 0.7

I Thus the absence of heads favors the lower of the two probabilities
(fairness). For a more complete representation, we might give θ
three possible values instead of two.

I Would the binomial likelihood still be appropriate in that case?
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Conjugate Priors

I Sometimes, when we compute the posterior using the likelihood to
account for new evidence, the resulting posterior distribution comes
from the same family as the prior distribution

I When this happens, we say that the prior is conjugate for the
likelihood P(X |θ)

I This is very convenient mathematically, and happens both for
discrete and continuous random variable distributions

I If the likelihood function is in the exponential family, then there
always exists at least one conjugate prior, often also from the
exponential family of distributions
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Ex 1: Beta Prior, Bernoulli Likelihood

I Suppose our evidence is a set of N IID data points, (x1, · · · , xN),
with each point sampled from a Bern(θ) distribution

I The joint likelihood of our evidence is thus:

L(X |θ) = ΠN
i=1θ

xi (1− θ)1−xi = θ
∑

xi (1− θ)N−
∑

xi

I Suppose also that the prior distribution is Beta(α, β):

π(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1I (θ ∈ [0, 1])

Note the presence of the indicator function that bounds θ in the
prior.

I We can compute the posterior, using a special trick to first derive
the normalizing constant:
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Ex 1: Beta Prior, Bernoulli Likelihood

Note that since the beta distribution integrates to 1, we have that for the
general beta r.v. t: ∫

ta−1(1− t)b−1 =
Γ(a)Γ(b)

Γ(a + b)

I We can use this identity to isolate π(X )∫
π(θ|X )dθ = 1

⇒ 1

π(X )

∫
L(X |θ)π(θ)dθ = 1∫

Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1I (θ ∈ [0, 1])θ

∑
xi (1− θ)N−

∑
xidθ = π(X )
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Ex 1: Beta Prior, Bernoulli Likelihood

π(X ) =
Γ(α + β)

Γ(α)Γ(β)

∫
θα+

∑
xi−1(1− θ)β+N−

∑
xi−1dθ

=
Γ(α + β)

Γ(α)Γ(β)
· Γ(α +

∑
xi )Γ(β + N −

∑
xi )

Γ(α + β + N)

Back-substituting into Bayes Rule, we can derive the posterior:

π(θ|X ) =
1

π(X )
· Γ(α + β)

Γ(α)Γ(β)
θα+

∑
xi−1(1− θ)β+N−

∑
xi−1

=
Γ(α + β + N)

Γ(α +
∑

xi )Γ(β + N −
∑

xi )
θα+

∑
xi−1(1− θ)β+N−

∑
xi−1

∼ Beta(α +
∑

xi − 1, β + N −
∑

xi − 1)

Thus we see that the beta prior is conjugate for the Bernoulli
likelihood.
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Ex 2: Gamma Prior, Poisson Likelihood

I Suppose instead we had a Gamma(a, b) prior, meaning

π(θ) =
ba

Γ(a)
θa−1e−bθI (θ > 0) ; a, b > 0

I Suppose too that our data are now IID according to a Poisson(θ):

L(X |θ) = ΠN
i=1

θxi e−θ

xi !
=

1

ΠN
i=1xi !

θ
∑

xi e−Nθ

for xi ∈ {0, 1, 2, · · · }, meaning the Poisson distribution has a
discrete support (non-negative whole numbers, or counts).

I As in the previous example, we can derive the posterior:

π(θ|X ) =
1

π(X )

1

ΠN
i=1xi !

ba

Γ(a)
θ
∑

xi e−Nθθa−1e−bθI (θ > 0)
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Ex 2: Gamma Prior, Poisson Likelihood

I We can use a similar trick to the one from the beta binomial
example: ∫

π(θ|X ) = 1

⇒ π(X ) =
1

ΠN
i=1xi !

ba

Γ(a)

∫
θ
∑

xi+a−1e−(N+b)θI (θ > 0)dθ

⇒ π(X ) =
1

ΠN
i=1xi !

ba

Γ(a)

Γ(a +
∑

xi )

(b + N)a+
∑

xi

Where we rely on the definition of the gamma distribution to
convert the integral in the second line. Back-substituting,

π(θ|X ) =
1

π(X )

1

ΠN
i=1xi !

ba

Γ(a)
θ
∑

xi+a−1e−(N+b)θI (θ > 0)
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Ex 3: Gamma Prior, Poisson Likelihood

=
(b + N)a+

∑
xi

Γ(a +
∑

xi )
θ
∑

xi+a−1e−(N+b)θI (θ > 0)

∼ Gamma(a +
∑

xi , b + N)

I Thus the Gamma prior is conjugate for the Poisson likelihood.

I Note that the mean of a gamma distribution is simply the ratio of
its parameters (αβ )

I So our gamma posterior’s mean (which is our updated belief about
the average value of θ) will be high when:

• prior beliefs indicate a high value (a >> b)

• Evidence suggests θ has a high value (
∑

xi/N >> 0)

Matthew Edwards Bayesian Inference August 19, 2021 17 / 31



Ex 3: Normal Prior, Normal Likelihood

I Now suppose x1, · · · , xN ∼IID N(θ, 1) and θ ∼ N(µ0, σ
2
0), where the

prior parameters are unknown constants

L(X |θ) =
N∏
i=1

fxi (xi |θ) =
N∏
i=1

1√
2π

exp

{
− (xi − θ)2

2

}

= (2π)N/2 exp

{
−

N∑
i=1

(xi − θ)2

2

}

π(θ) =
1√

2πσ2
0

exp

{
− (θ − µ0)2

2σ2
0

}

I To make our lives easier, we ignore the coefficients on the
distributions (including the normalizing constant):
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Ex 3: Normal Prior, Normal Likelihood

π(θ|X ) ∝ exp

{
−

N∑
i=1

(xi − θ)2

2
− (θ − µ0)2

2σ2
0

}

= exp

{∑
x2i + 2θ

∑
xi + Nθ2

2
− θ2 − 2µ0θ + µ2

0

2σ2
0

}
= exp

{
−σ2

0(
∑

x2i + 2θ
∑

xi + Nθ2) + θ2 + 2µ0θ + µ2
0

2σ2
0

}
= exp

{
θ2(1 + Nσ2

0)− 2θ(µ0 +
∑
σ2
0xi )− (µ2

0 + σ2
0

∑
x2i )

2σ2
0

}
Any term in our exponent that does not involve θ can be seen as part of
the normalizing constant, and can be ignored
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Ex 3: Normal Prior, Normal Likelihood

π(θ|X ) ∝ exp

{
θ2(1 + Nσ2

0)− 2θ(µ0 +
∑
σ2
0xi )

2σ2
0

}

∝ exp

θ
2 − 2θ

(µ0+
∑
σ2
0xi )

(1+Nσ2
0)

2σ2
0

(1+Nσ2
0)


We can complete the square (ax2 + bx + c), converting the interior from
standard quadratic form to vertex form:

∝ exp

−1

2

(θ − (µ0+
∑
σ2
0xi )

(1+Nσ2
0)

)2

σ2
0

(1+Nσ2
0)

 ∼ N(µ =
(µ0 +

∑
σ2
0xi )

(1 + Nσ2
0)

, τ 2 =
σ2
0

(1 + Nσ2
0)

)

Thus the normal prior is conjugate for the normal likelihood. Note that
this result still holds for a non-unit likelihood variance (try and show this
yourself!)
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Non-informative Priors

I You may be wondering, how exactly do we choose a specification for
our prior when we have no evidence?

I This usually depends on the parameter of interest θ

I When we don’t have strong prior beliefs and want to let the evidence
speak for itself, we often use a non-informative or diffuse prior

I Technically all priors carry at least some information about the
parameter, so it is a misnomer, but the idea with this type of prior is
to eliminate parameter values that will never occur, while
maintaining as flat a distribution as possible

I For example, we may use a Unif (0, 1) prior to describe a percentage,
or a Gamma(a, b) distribution for the price of a hamburger (strictly
non-negative)
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Weakly Informative Priors

I Usually we do have some knowledge about the scale of our
parameter of interest

I We want our prior to be weakly informative; it rules out
unreasonable values, but still allows for all possible values that could
occur (even if they rarely do)

I Roughly speaking (though not always) the information contained
within a prior is inversely proportional to its variance (thus wider and
flatter distributions are less informative)

I A common weakly informative prior is the N(0, 1) distribution,
where the units of the parameter of interest are appropriately scaled

I It is also common to use a Cauchy(0, γ) prior, or the student-t
(which interpolates between Normal and Cauchy), truncating the
distribution when the parameter is strictly positive
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Informative Priors

I Sometimes priors can be used to encorporate important information
into the model

I Ex: Suppose we want to estimate tomorrow’s trading volume of
Apple stock on the NYSE

I We can examine historical trading data to determine the average
trading volume m, and sample variance s2

I A reasonable prior in this case would be N(m, s2); In general such
numerical information may come from literature reviews, or previous
analysis

I Note that the above computations ignore the fact that trading data
tends to have high serial correlation (non-IID), so simply computing
the sample variance may not be a good estimator (the example is
purely illustrative)
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Improper Priors

I Recall our Beta prior, Bernoulli likelihood example earlier

I Instead of using a mathematically convenient prior, we might ask:
What is the least informative prior for the Bernoulli likelihood?

I Intuition might tell you to use a U(0, 1). This yields a posterior
distribution of π(θ|y) = Beta(1 +

∑
yi , 1 + n −

∑
yi ) (try to show

this yourself)

I The Maximum likelihood estimate is simply
∑

yi
n , whereas the

posterior mean is
∑

yi+1
n+2 , so clearly the standard uniform prior still

carries information!

I The general form of the posterior mean for a Beta(α, β) prior is

E (θ|x) =
α +

∑
yi

α + β + n
=

α + β

α + β + n
· α

α + β
+

n

α + β + n
·
∑

yi
n
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Improper Priors

posterior mean = prior weight · prior mean + data weight · data mean

I Notice that in order for the prior to have no effect on the posterior
(ie to carry no information), we require α = β = 0

I This corresponds to a prior of Beta(0, 0) = 1
θ(1−θ) , which is known

as the Haldane Prior

I However the limiting Beta coefficient on the Haldane Prior is
infinite, thus

∫
π(θ)dθ > 1

I Prior distributions that do not integrate to 1 are called improper,
and can still be used successfully as long as the resulting posterior is
proper (as was shown above)
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Jeffreys Priors

I Suppose we have a flat prior (ie θ ∼ U(0, 1))

I If we are ignorant about θ, then we should also be ignorant about
φ = log θ

1−θ

I By method of CDF, if Fθ(t) = t:

Fφ(t) = Pr(φ ≤ t) = Pr(log

(
θ

1− θ

)
≤ t)

= Pr(
θ

1− θ
≤ et) = Pr(θ ≤ et − θet)

= Pr(θ ≤ et

1 + et
) = Pr(θ ≤ 1

1 + e−t
)

= Fθ(
1

1 + e−t
) =

1

1 + e−t

∼ Logistic(0, 1)
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Jeffreys Priors

I The above distribution is not at all flat. It carries much more
information (see below)

I This is because flat priors are not well defined. They are not
transformation invariant

I Jeffreys Prior: Use π(θ) ∝ I (θ)1/2, where I (θ) is the Fisher
Information of θ. This will be transformation invariant.
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Jeffreys Prior Example: Exponential Distribution

I Suppose our likelihood follows an exponential distribution:
f (x |θ) = θe−θx (for non-negative x)

I Recall the score function:

s(θ) =
∂

∂θ
log f (x |θ) =

1

θ
− x

I When the log-likelihood is twice differentiable, the Fisher
information is the negative expectation of its second derivative:

I (θ) = −E [
∂2

∂θ2
log f (x |θ)] = −E [

∂

∂θ
s(θ)] =

1

θ2

I Jeffreys Rule: Use π(θ) ∝
√

1
θ2 = 1

θ

I We will not prove transformational invariance here, but I encourage
you to try and do so
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Posterior Inference

I So now that we’ve identified the posterior distribution, what can we
do with it?

I The first (and most obvious) calculations to find are point estimates,
usually that summarize the center

• Mean: E(θ|x)

• Median: θ̂ :
∫ θ̂
−∞ P(θ|x)dθ = 0.5

• Mode: argmaxθP(θ|x)

I We can also compute intervals with the posterior distribution

I These intervals are called Bayesian Credible Intervals

I A (1− α)% interval is a credible interval if the probability that θ is
contained in the interval is 1− α
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Credible Intervals

I Such credible intervals are not unique on a posterior distribution. So
how do we choose the end points?

I Equi-tailed Interval: Choose the interval such that the posterior
probability of being below the interval is identical to the probability
of being above (α/2 in each tail)

I Highest Posterior Density: Choose the narrowest interval, which
for a unimodal posterior means choosing the values with the highest
posterior density (this includes the mode)

I We could also simply construct an interval centred around the
posterior mean

I Regardless of the method, notice that unlike with confidence
intervals, credible intervals are probability statements about θ
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Posterior Sampling

I We’ve discussed a lot in these slides, mostly about deriving posterior
distributions and conducting inference with them

I What happens when we cannot analytically derive a posterior? What
do we do?

I Turns out we don’t need to find the exact form of the posterior - We
only need to be able to collect a sample from it!

I This will be the subject of the next set of slides: Bayesian
Inference II
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