
Working with Git Bash
JSC270 Lab 4

Matthew Edwards

mr.edwards@utoronto.ca

Feb 3, 2021

1/37



Last Week: Git

Recall last week, we learned about version control
• Git is a version control system used to track changes in sets of

files (called repositories, or repos)

• It was originally designed for computer programmers to
collaborate during software development

• Today, almost all data science teams (in both academia and
industry) use it to track their work

• The system includes a small (but very powerful) set of
commands for editing and tracking files, including:

• push
• pull

• add
• commit

• clone
• branch

2/37



Last Week: GitHub

If the goal is collaboration, these file collections (repos) should be
stored somewhere easily accessible
• GitHub is an internet hosting service designed to store Git

repositories. It allows for easy interaction with Git

• It is not the only service that does this (e.g. GitLab, BitBucket,
SorceForge), but it is by far the most popular (and free)

• Git and GitHub can track multiple branches (versions) of the
same repository, so contributors can make changes in
parallel without affecting the main/master branch
• This is particularly useful if you’re experimenting (ie you’re not

sure if your changes will actually work)

3/37



A Basic Git Workflow

Here is a basic step-by-step process for managing repos:

1. You have a new repo you’d like to work with. Either you’ve
created it yourself, or it is someone else’s public repository.
• Recall from last week: Only you (the repo creator) and

contributors you allow can see a private repo.

2. You Fork or Clone that repo to your local machine (e.g into
your local gitrepos folder). More on this later.

3. You edit files in the local repo (or create new ones). If you’re
experimenting, you would first create a new branch, so your
changes do not affect main.

4/37



A Basic Git Workflow

4. You submit any changes you’ve made so they can be tracked by
Git. This is a two-part process:

i) Use the add command to move changes to the staging area.
This tells Git that you have changes to be included in your next
commit.

ii) Use the commit command to save these changes to your local
repo. This effectively takes a ’snapshot’ of your files.

Note:
Committed snapshots are safe - Git will never change them unless
you tell it to.

Every commit you make is recorded and tracked, so you may revert
back to past versions of your project at any time.

5/37



A Basic Git Workflow

5. (Optional) If you were
experimenting on a
different branch, you can
merge your newer version
back into the main
branch.

6. You use the push command to push your commit(s) from your
local repo to the remote repo (on GitHub). Again, more on this
later.

Source:https://www.atlassian.com/git/tutorials/merging-vs-rebasing

6/37



A Basic Git Workflow

7. If other contributors are following a similar process, it’s likely
they will push changes to the remote (GitHub) repo that you do
not have locally. Use the pull command to to update your
local repository to the most current version.

Note:
In this course, you will be the only ones editing your assignment files
(although we need contributor access to read them), so steps 5 and 7
may not be necessary.

But in practice, there could be many contributors, and the remote
repo might be ahead of (upstream from) your local version. So a
good rule is to always pull before you make changes.

7/37



Question Time

Any questions about Git or GitHub (or about anything else so far)?

8/37



What is Bash?

So what does any of this have to do with Bash?

• A command line interface is an interpreter that processes text
commands to allow interaction with your computer’s operating
system.

• The Born-again Shell, or Bash, invented in 1989, is one of the
most popular CLIs available

• Bash is designed to work seamlessly with Git, but also makes it
very easy to navigate through the files on your computer

• Every step in the workflow above can be done in Bash

9/37



Installing Bash

Mac Users: Good News! Apple computers use a version of Bash as
the default CLI.

• To open the shell, simply use Command + Spacebar to launch
Spotlight, then search Terminal and double-click the search
result
• Alternatively you could click through Applications ->

Utilities and find Terminal in there

10/37



Installing Bash

Windows Users: Unfortunately Bash is not the default, so we’ll
have to install it separately
1. Go to the install page: https://gitforwindows.org/
2. Click the ’Download’ button
3. Once downloaded, run the .exe file
4. "Do you want to allow this app to make changes to your device"

-> Yes
5. Use the default settings. Keep clicking Yes, and then eventually,

click Finish

11/37

https://gitforwindows.org/


Installing Bash

For Windows, the application is called Git Bash.
• You can open this by searching ’Git Bash’ in the Windows Start

menu

Mac Shell Windows Shell

12/37



Exercise 1

• Windows users, go ahead and install Git Bash using the
instructions above. Then open the Bash shell

• Mac Users (or any Windows users already familiar with Bash)
can just open the terminal.

• Please type Done into the Zoom chat once you’ve completed
this, so I know when to move forward.

13/37



Navigating Your File System

• Your computer stores files
in a tree structure

• the top of the tree is
called the root

• Individual files are grouped
together in folders, also
known as directories

• Some directories can be
made into git repos

*When you open a new bash
shell, you are automatically
at the root of your file tree

src:http://korflab.
ucdavis.edu/Unix_and_
Perl/unix_and_perl_v3.0.
html

14/37

http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.0.html
http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.0.html
http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.0.html
http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.0.html


Navigating Your File System

The bash shell (Windows or Mac) will indicate that it is ready to
receive your commands by prompting you with a $

• To identify where your shell is looking in your file tree, you can
use the pwd command (print working directory) to print your
location. Try it yourself (type the command in, and press enter)

• Use the ls command to ’list’ all the files in your current
directory (this may include other directories)

15/37



Navigating Your File System

Suppose we want to move further down our file tree:

• We just used ls to identify subdirectories (folders) within our
current directory.

• To move into one of these subfolders, type:
cd <dir name> (which directory you choose is up to you)
This command stands for ’change directory’

• You have now moved into the subdirectory, and can view the
contents of this new folder with the ls command (see for
yourself!)

16/37



Some Other Useful Navigation Tricks

Question: What if we want to go up the file tree instead of down?

Answer: Bash uses the argument ../ to mean ’the parent directory
of my current location’
• So by typing:

cd ../
I move up one level of the tree.

• Note that cd also accepts longer file paths so by typing:
cd ../../../
I would move up three levels (assuming you are at least 3 levels
down)

17/37



Some Other Useful Navigation Tricks

After a few commands in a row, you’ll probably be close to the
bottom of the shell:
• Use the clear command to remove the history shown in the

shell (Bash still maintains your current directory, which you can
confirm using pwd or ls)

• When moving down several directories at once, you can use the
TAB key to autocomplete directory names as you type (this
assumes the name is unique):
cd Documents/gitrepos/JSC270.github.io/

18/37



Some Other Useful Navigation Tricks

Important: Because Git and Bash are Unix-based systems, file paths
must use / forward slashes to separate directory names.
• You can use the ↑ and ↓ arrow keys to recall previous commands

in the shell (even if you’ve used clear to remove them from
view)

• At any time, you can close the shell by typing: exit

• When you do this, the Bash shell resets to the root directory,
and you lose your command history

Tip: Bash is case-sensitive, and does not like spaces in file names.
For easier navigation, you might try naming files using snake case,
where all words are lowercase, and separated with underscores.

19/37



Question Time

Any questions about file navigation?

20/37



Creating, Removing, and Renaming Directories

We can do more than look at our file tree: we can add new
directories
• We use the command mkdir <newdir name> to create a new

directory (here, <newdir name> is something you choose)

• The command rmdir <dir name> will remove an existing
directory

• You can use mv <oldname> <newname> to rename a directory.
This command stands for ’move’, since you can also use it to
move a directory

21/37



Exercise 2: Creating a gitrepos Folder

It’s standard practice to keep your local git repos in one place on
your computer.
• Let’s create a gitrepos folder (using the mkdir command)

where we’ll store your repo for assignment 2

• Where exactly you want to put this directory is up to you (I keep
mine just inside my Documents).

• If you’re not currently in the location you want, navigate
through your file tree until you find your preferred location

• Please type Done into the Zoom chat once you’ve finished, so I
know when to move forward

22/37



Forking or Cloning Existing Repos

• When you clone a remote repository, you’re just making a copy
of that repo on your local machine

• Anyone can clone any public GitHub repo

• However, if you’re not a contributor on the repo you cloned:
1. You cannot push local changes you make back to the remote
(GitHub) repo
2. You cannot pull new changes made by the contributors to
update your local version (you would have to re-clone that
remote repo if you wanted to update)

• The command to clone a repo is:
git clone http://github.com/username/repo-name
Where username and repo-name depend on the repo

23/37



Forking or Cloning Existing Repos

If you want to add to a GitHub repo but aren’t the
creator/contributor, you first need to fork that repo.
• Forking creates a copy of the repo you want on your account.

Your copy is connected to the original repo, but changes you
push to your forked copy do not affect the original

24/37



Forking or Cloning Existing Repos

• You can fork a repo using the ’fork’ button in the upper right
corner on the GitHub repo page (see picture above)

• Then you would clone your forked copy to your local machine
(as before)

• To actually change the original repo, you would:
1. Make changes locally, and push them to your forked copy
(usually on a separate branch)
2. Submit a pull request to the original repo owner, so they can
merge the changes on your fork into the original remote repo

25/37



Forking or Cloning Existing Repos

• We won’t be covering pull requests today

• They won’t be neccessary for the assignment, since you won’t
need to modify Lauren’s original repo (you’re just pushing
changes to your forked copy, which Lauren and I, as
contributors, will see)

• However, if you would like to (one day) contribute to a large
open-source project, you will likely use pull requests

26/37



Exercise 3: Cloning Your Repo

You’ll need to fork a git repository for Assignment 2. Now, you can
clone this repo to your local machine:
1. You can copy the link to your remote repository using the green

button on GitHub

27/37



Exercise 3: Cloning Your Repo

2. Make sure you’re actually in your gitrepos directory (use the
cd command if you’re in its parent directory)

3. Clone your remote repo to your local machine by typing:
git clone <repo weblink>

• Please type Done into the Zoom chat once you’ve finished, so I
know when to move forward

28/37



Creating Files

In addition to creating directories, we can also create files:
• Use the command

touch <filename>
to initialize a file (e.g. touch example.txt)

• Then use
start <filename>
to open and edit that file

• We can use a similar syntax to open an application without
specifying a file name:
e.g. start firefox

• To remove a file, use: rm <filename>

29/37



Question Time

Any Questions?

30/37



Exercise 4: Adding a Text File to Your Assignment 2 Repo

Using the touch and start commands, create a file in your
assignment 2 repo called prereq.txt
• In this text file, please indicate all the different types of

statistical distributions you’re familiar with (ie the ones you’ve
worked with before)

• You can separate them with commas, or put one distribution on
each line (the exact formatting doesn’t matter)

• The next page contains a list of distributions for you to reference

31/37



Exercise 4: Adding a Text File to Your Assignment 2 Repo

Some types of distributions:

• Uniform
• Normal
• Bernoulli
• Binomial
• Exponential
• Geometric
• Hypergeometric

• Poisson
• Chi-squared
• Student-T
• F Distribution
• Gamma
• Beta
• Multinomial

• Negative
Binomial
• Cauchy
• Laplace
• Pareto
• Rayleigh
• Weibull

When you’ve finished filling your text file, please save it and type
Done in the Zoom Chat, so I know when to move forward.

32/37



Tracking and Committing Changes

Once you’ve modified existing files or created new ones in your local
git repo, we can use the process from last week to commit those
changes:
1. Make sure you’re in your git repo (use the cd command if not)

2. Use git status to check for modifications to the local repo

3. Use git add <filename> or git add . to stage your
revisions

4. Use git commit -m ’Message’ to commit the changes (take a
snapshot)

5. Push the newest commit to the remote repo with git push

33/37



Exercise 5: Committing Your New File

Go ahead and follow the steps above to add, commit, and push
prereq.txt to your remote repository for Assignment 2

34/37



Exercise 5: Committing Your New File

You’ll notice Bash uses different colours to separate modifications
that haven’t been staged (red) from those that are staged but not
committed (green)

35/37



Exercise 5: Committing Your New File

You’ll know you’ve succeeded when you get a message similar to:

Please type Done into the Zoom chat once you’ve successfully
pushed changes.

36/37



Conclusion

In terms of Bash’s capabilities, this is just the tip of the iceberg. You
can:
• Customize the look of the shell

• Run programming files directly from the command line

• Alias certain commands (ie customize the shell commands to
your liking)

But, we’ve covered everything you’ll need to complete Assignment 2.
Questions?

37/37


	Review

